CT Imaging of Coronavirus Disease-19 (COVID-19)

Karen Conner MD, MBA

Chest Section Chief

Intermountain Healthcare

March 9, 2020

Importance of CT in COVID-19 diagnosis

False negatives of RT-PCR test

- In one study of 167 patients, 93% had both positive CT findings and lab testing, 4% had positive RT-PCR laboratory testing for 2019-nCoV infection but negative CT findings, 3% had negative laboratory test results but positive CT findings. All of these patients went on to develop positive test results.
 - "Reasons for false negative RT-PCR may include insufficient cellular material for detection and improper extraction of nucleic acid from clinical materials."

Delay in processing or lack of testing availability

• Hopefully not an issue in USA if we're able to slow the rise of new cases over time.

However, in patients early in disease course, CT may also be negative. In addition, other viral illnesses are more likely to cause CT abnormalities in areas with low prevalence. Therefore, CT is NOT recommended as a primary diagnostic tool.

CT Findings in COVID-19 - Summary

- Disease follows a typical pattern for viral infection causing acute lung injury.
- Temporal progression from small subpleural ground glass opacities (GGO) with a basilar predominance that grow larger and become more widespread and develop into crazypaving patterns, reverse halo signs, and consolidation.
- As patient recovers, becomes an organizing pneumonia pattern with fibrous streaks, sub pleural clear lines, and decreasing GGO and consolidation.

CT Findings in COVID-19

CT Findings in COVID-19 - Summary

- Cavitation, calcification, bronchovascular distribution, centrilobular or military nodules, lymphadenopathy and pleural effusions are not typical features.
- In children, 40% present with co-infection and may show more of the atypical features. However, most commonly, they present similarly with basilar and subpleural consolidation with GG halo.

CT Findings – Summary by Ithan Peltan, IH Pulmonologist

	Zhao	Shi	Pan	Chung	Bernheim
	(AJR)	(Lancet ID)	(Radiology)	(Radiology)	(Radiology)
Patients	101	81	82	21	121
Distribution (general)					
Peripheral dominant	87%	87% 54%		33%	52%
Peripheral or diffuse	99%	99% 89% 95%		??	100%
Central dominant	1%	12%	0%	NR	0%
Bilateral	82%	79%	70%	76%	60%
Consolidation pattern					
GGOs alone	22%	65%	NR	57%	41%
GGOs with or without consolidation	86%	79%	73%	86%	75%
Consolidation only	14%	17%	NR	0%	3%
Mediastinal lymphadenopathy	1%	6%	0%	0%	0%
Pleural effusion	13%	5%	NR	0%	1%
Cavitation	NR	NR	NR	0%	0%

- Items in green tend would be suggestive <u>but are not truly specific</u> for COVID-19
- Items in orange appear to be inconsistent with COVID-19.
- Additional patterns/findings that were difficult to translate to tabular form:
 - o Micronodules generally and centrilobular or bronchovascular distributions are not typical
 - Single or multiple purely solid nodules are not typical.

TABLE 3: CT Features of Co Disease 2019 Pneu		Fibrotic streaks	35 (56.5)		
CT Feature No. (%) of Patients (n=62)		Subpleural line Subpleural transparent line Bronchial change	21 (33.9) 33 (53.2)		
Lesion presentation on initial scanSingle lesion10 (16.1)Multiple lesions52 (83.9)Lesion distribution9Peripheral48 (77.4)Peripheral and central14 (22.6)CT sign14 (22.6)Lung change25 (40.3)GGO25 (40.3)Consolidation21 (33.9)GGO and reticular pattern39 (62.9)Vacuolar sign34 (54.8)Microvascular dilation sign28 (45.2)	Air bronchogram Bronchiectasis Bronchus distortion Pleural change Thickening of pleura Pleural retraction sign Pleural effusion	45 (72.6) 20 (32.2) 11 (17.7) 30 (48.4) 35 (56.5) 6 (9.7)			
	21 (33.9) 39 (62.9)	Note—GGO = ground-glass opacitie	S. /ID-19) Pneumonia in 62 Patients in Wuhan, China		

Table 2: Findings on Chest CT in 121 Patients

GROUND-GLASS OPACITIES AND CONSOLIDATION	
Absence of Both Ground-Glass Opacities and Consolidation	27 (22)
Presence of Either Ground-Glass Opacities or Consolidation	94 (78)
Presence of Ground-Glass Opacities without Consolidation	41 (34)
Presence of Ground-Glass Opacities with Consolidation	50 (41)
Presence of Consolidation without Ground-Glass Opacities	2 (2)
NUMBER OF LOBES AFFECTED	
0	27 (22)
1	18 (15)
2rad	14 (12)
3	11 (9)
4	18 (15)
5	33 (27)
More than 2 lobes affected	62 (51)
Bilateral Lung Disease	73 (60)

53 (44)
50 (41)
79 (65)
58 (48)
76 (63)
3
0 - 18
3

Note: Numbers in Parentheses are Percentages

<u>Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection.</u> Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, Diao K, Lin B, Zhu X, Li K, Li S, Shan H, Jacobi A, Chung M.

Radiology. 2020 Feb 20:200463. doi: 10.1148/radiol.2020200463. [Epub ahead of print]

Time course of findings

- **0-4 days** Early stage: Small amount of subpleural GGO, basilar predominant, right slightly greater than left. No subpleural sparing.
- **5-9 days** Progressive stage: Increased distribution of GGO with developing crazy paving pattern (new interlobular septal thickening likely representing interstitial edema from DAD).
- **9-13 days** Peak stage: Consolidation develops. Radiologic abnormalities appear to peak at day 10. See some repair starting and findings of organizing pna, sub pleural bands,
- **<u>></u> 14 days** Absorptive stage: Gradual resolution.

Typical progression

Typical progression

Initial CXR and CT at day 3 of fever to left. Below are 2 images from subsequent scans on days 6 and 12

Bars show the mean number of involved lung segments on CT scans from patients in group 1 (scan before symptom onset; n=15), group 2 (scan ≤1 week after symptom onset; n=21), group 3 (scan >1 week to 2 weeks after symptom onset; n=30), and group 4 (scan >2 weeks to 3 weeks after symptom onset; n=15).

CT Findings in COVID-19 – Additional features

- Early on can be unifocal, most common RLL
- Cystic changes, bronchiectasis or bronchiolectasis, and microvascular engorgement sign can also occur. Vascular dilatation may precede parenchymal involvement.

CT Findings in COVID-19 – Additional features

- Cystic change "vacuolar sign".
- Air bronchograms and bronchial distortion.

Transverse CT scans from a 60-year-old man (day 8 after symptom onset) Diffuse alveolar damage pattern. This patient died 4 days later Synoptic element from the template for **CT COVID-19 Chest W/O**

CT findings compatible with COVID-19 viral pneumonia? [Yes/No/Possibly]

CT findings of pneumonia are often non-specific, and there is overlap between findings of viral pneumonia and bacterial pneumonia, as well as amongst viral pneumonias. Therefore, specific causative agents cannot be determined on imaging alone.

Pneumonia due to influenza A virus shows multiple irregular areas of consolidation (arrows) along the bronchovascular bundles and diffuse GGO (arrowheads) with interlobular septal thickening in both lungs

Pneumonia due to CMV shows diffuse illdefined patchy GGO with interlobular septal thickening (arrowheads) in both lungs.

Pneumonia due to varicellazoster virus shows multifocal 1–10-mm well-defined or illdefined nodular opacity (arrows) with a surrounding halo or patchy GGO (arrowheads) in both lungs.

Pneumonia due to Human Meta Pneumo Virus (HMPV) shows multiple ill-defined nodules (arrows) or GGO (arrowhead) along the bronchovascular bundles in both lungs. These findings are similar to those of Human Parainfluenza Virus (HPIV) pneumonia, which belongs to the same viridae.

Family [subfamily]	Common Name	Transmission* Patho		Typical CT Findings						
			Pathogenesis	Distribution	Consolidation	GGO	Nodule	Bronchial Wall Thick- ening		Systemic Involvement
Adeno-	Adenovirus	Respiratory, fecal-oral, con- junctival	Bronchiolar and alveolar damage	Multifocal	+++	+++	Centrilobular+	UC	С	Not definite
Herpes-[Alpha- HSV herpes-]	HSV	Contact (oral or genital secretion)	Cytopathic effect with dif- fuse alveolar damage	Multifocal random, or segmental	++	+++	+	UC	F	Gingivostomatitis, pharyngitis and her- pes labialis (HSV1)
	Varicel- la-zoster virus	Contact, airborne (aerosol, drop- lets)	Hematogenous spread to alveolus, cytopathic effect with mononuclear cell infiltration	Multifocal	Rare	Surround- ing halo	1-10 mm (in late phase, calcifica- tion)	UC	Rare	Skin rash
Herpes- [Betaherpes-]	CMV	Contact, transpla- cental, blood transfusion	Cytopathic effect with dif- fuse alveolar damage	Diffuse	++	++++	++	UC	Rare	Not definite
Herpes- [Gam- maherpes-]	Ep- stein-Barr virus	Oral, blood trans- fusion, organ transplantation	Mononuclear inflammatory cell infiltration along bronchovascular bundles and interlobular septa	Diffuse (pneumo- nia is rare)	Rare	++	Rare	UC	v	Infectious mononu- cleosis, mediastinal LAP, splenomegaly
Parvo-[Parvo-]	Bocavirus [†]	Aerosol and con- tact	Induced cytokine expres- sion	Diffuse	++	++	Rare	UC	С	Not definite
Paramyxo-	HPIV	Contact, droplet	Bronchiolar and alveolar damage with mucus plugging	Airway, multi- focal	+	+	Centrilobu- lar++	С	UC	Not definite
	Measles	Airborne (aerosol, droplets), contact with secretion or skin rash	Bronchiolar and alveolar epithelial damage with multinucleated giant cell formation	Multifocal	Rare	+	+	UC	С	Hilar LAP, gastro- enteritis, encepha- lins
	Mumps⁺	Droplets or aerosol, transplacental	Mononuclear cell infiltra- tion of bronchiole and alveolar septa	Multifocal	Rare	++	Rare	UC	Rare	Parotid gland (95% of patients)

Family [subfamily]				Typical CT Findings						
	Common Name		Pathogenesis	Distribution	Consolidation	GGO	Nodule	Bronchial Wall Thick- ening		Systemic Involvement
HMPV Direc	ŔŚV	Contact, aerosol	Destruction of bronchial and alveolar epitheli- um with small airway obstruction	Airway, multi- focal	+	+	Centrilobu- lar+++	Ċ	Ĉ	Not definite
	Direct or close contact, droplet, aerosol	Upregulation of cytokines leads to perivascular and peribronchiolar infiltra- tion	Airway, multi- focal	+	+	Centrilobu- lar+++	С	UC	Not definite	
Hanta-	HCPS, HFRS	Aerosol	Direct involvement of vascular endothelium resulting in increased endothelial permeability	Pulmonary edema	Rare	Rare	Rare	UC	F	ARF (HFRS), thrombocytopenia, hypotension, shock (HCPS)
Phenui-	SFTS	Tick-borne	Upregulation of cytokines resulting in increased endothelial permeability	Pulmonary edema	Rare	Rare	Rare	UC	F	Shock, multiorgan failure, thrombocy- topenia
Orthomyxo-	Influenza	Droplet, airborne	Destruction of airway epi- thelial barrier, resulting in necrotizing bronchitis and diffuse alveolar damage	Airway, multi- focal	+	+	++	С	UC	Not definite
Corona- [Corona-]	Human coronavi- rus	Droplet, airborne, contact	SARS: diffuse alveolar damage by involving angiotensin-convert- ing enzyme; MERS: dysregulation of the host cellular transcriptome resulting in apoptosis	Peripheral, multifocal	+++	+	Rare	UC	Rare	Not definite
	Rhinovirus	Droplet, aerosol, or contact	Disruption of epithelial barrier function causing increase vascular leakage and mucus secretion; no cytopathic effect	Multifocal	+	++	Rare	UC	Rare	Not definite
	Enterovirus	Fecal-oral, contact, droplet	Attachment to decay-ac- celerating factor of the lower respiratory tract	Multifocal	+	++	Rare	UC	Rare	Not definite

References – I stole pictures and graphics and plagiarized rampantly

from these articles

PMID: 32101510

Time Course of Lung Changes On Chest CT During Recovery From 2019 Novel Coronavirus (COVID-19) Pneumonia. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, Zheng D, Wang J, Hesketh RL, Yang L, Zheng C. Radiology. 2020 Feb 13:200370. doi: 10.1148/radiol.2020200370. [Epub ahead of print] PMID: 32053470 CT Features of Coronavirus Disease 2019 (COVID-19) Pneumonia in 62 Patients in Wuhan, China. Zhou S, Wang Y, Zhu T, Xia L. AJR Am J Roentgenol. 2020 Mar 5:1-8. doi: 10.2214/AJR.20.22975. [Epub ahead of print] PMID: 32134681 Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, Diao K, Lin B, Zhu X, Li K, Li S, Shan H, Jacobi A, Chung M. Radiology. 2020 Feb 20:200463. doi: 10.1148/radiol.2020200463. [Epub ahead of print] PMID: 32077789 Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. AJR Am J Roentgenol. 2020 Mar 3:1-6. doi: 10.2214/AJR.20.22976. [Epub ahead of print] PMID: 32125873 Chest Radiographic and CT Findings of the 2019 Novel Coronavirus Disease (COVID-19): Analysis of Nine Patients Treated in Korea. Yoon SH, Lee KH, Kim JY, Lee YK, Ko H, Kim KH, Park CM, Kim YH. Korean J Radiol. 2020 Feb 26. doi: 10.3348/kjr.2020.0132. [Epub ahead of print] PMID: 32100485 Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C. Lancet Infect Dis. 2020 Feb 24. pii: \$1473-3099(20)30086-4. doi: 10.1016/\$1473-3099(20)30086-4. [Epub ahead of print] PMID: 32105637 Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L. Radiology. 2020 Feb 26:200642. doi: 10.1148/radiol.2020200642. [Epub ahead of print]

Essentials for Radiologists on COVID-19: An Update—Radiology Scientific Expert Panel Jeffrey P. Kanne, Brent P. Little, Jonathan H. Chung, Brett M. Elicker, and Loren H. Ketai Published Online Feb 27 2020 https://doi.org/10.1148/radiol.2020200527 Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management. Li Y, Xia L. AJR Am J Roentgenol. 2020 Mar 4:1-7. doi: 10.2214/AJR.20.22954. [Epub ahead of print] PMID: 32130038 Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Pediatr Pulmonol. 2020 Mar 5. doi: 10.1002/ppul.24718. [Epub ahead of print] PMID: 32134205

Franquet T. Imaging of pulmonary viral pneumonia. Radiology 2011;260(1):18–39.

M Chung, A Bernheim, X Mei, *et al.* **CT imaging features of 2019 novel coronavirus (2019-nCoV)** Radiology (2020) published online Feb 4. DOI: 10.1148/radiol.2020200230

Koo HJ, Lim S, Choe J, Choi SH, Sung H, Do KH. Radiographic and CT Features of Viral Pneumonia. **RadioGraphics** 2018;38(3):719–739. Link, Google Scholar